Application of Kernel Trick to Fuzzy c-Means with Regularization by K-L Information

نویسندگان

  • Hidetomo Ichihashi
  • Katsuhiro Honda
چکیده

Support vector machines (SVM), kernel principal component analysis (KPCA), and kernel Fisher discriminant analysis (KFD), are examples of successful kernel-based learning methods. By the addition of a regularizer and the kernel trick to a fuzzy counterpart of Gaussian mixture density models (GMM), this paper proposes a clustering algorithm in an extended high dimensional feature space. Unlike the global nonlinear approaches, GMM or its fuzzy counterpart is to model nonlinear structure with a collection, or mixture, of local linear sub-models of PCA. When the number of fearture vectors and clusters are n and C respectively, this kernel approach can find up to C × n nonzero eigenvalues. A way to control the number of parameters in the mixture of probabilistic principal component analysis (PPCA) is adopted to reduce the number of parameters. We apply the kernel trick to the clustering method in a high dimensional feature space. The algorithm provides a partitioning with flexible shape of clusters in the original input data space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

From Zero to Reproducing Kernel Hilbert Spaces in Twelve Pages or Less

Reproducing Kernel Hilbert Spaces (RKHS) have been found incredibly useful in the machine learning community. Their theory has been around for quite some time and has been used in the statistics literature for at least twenty years. More recently, their application to perceptron-style algorithms, as well as new classes of learning algorithms (specially large-margin or other regularization machi...

متن کامل

Fuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition

 In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JACIII

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2004